Where does the waste originate from?

- Private homes
- Businesses
- Condominium complexes
- Nursing homes
- Apartments

ANY DWELING THAT USES WATER AND IS CONNECTED TO THE SEWER SYSTEM WITHIN DISTRICT #3
SANITARY SEWER DISTRICT #3

- **Collection area**
 - Freeport to Suffolk Border
 - LIE to Great South Bay
 - The district has approximately 40,583 lines
 - Equating to 1,528 miles of sewer pipe
How does it get here?

- The sewage flows from homes and businesses into laterals within the street adjacent to the property.
- The laterals feed into mains which flows primarily by gravity to the waste water plant, maintaining a minimum velocity of 2-feet per second.
What happens in low lying areas?

- When the sewage can no longer flow by gravity due to the low lying topography, it is raised up utilizing lift / pump stations.
- Once lifted gravity continues to move the sewage to the treatment facility.
- Depending on the location of original sewage it may need to be lifted / pumped several times before it arrives at the treatment plant.
Pump Station (Submersible Pumps)
Pump Station (Dry Well Pumps)
Waste Water Treatment Systems

Fixed growth systems

- RBC’s
- Trickling Filters
 - Less technologically advanced
 - Effluent quality (moderate to good)
 - Less capital cost
 - Typically less operating cost than suspended growth
Waste Water Treatment Systems

Suspended growth systems (CEDAR CREEK WPCP)

- Activated Sludge
 - More technologically advanced
 - Better effluent quality (good to excellent)
 - More capital costs
 - Typically more operating costs than fixed growth
Suspended Growth (activated sludge)

- There are different modes of operations for activated sludge processes:
 - Conventional-plug flow *(CEDAR CREEK WPCP)*
 - Step-feed
 - Contact Stabilization
 - Extended aeration
 - Cannibal processes (specialized process)
 - Ponds & Lagoons (most basic process)
Cedar Creek Plant Overview

- Preliminary Treatment
- Primary Treatment
- **Secondary Treatment**
- Disinfection / Discharge
- Solids Handling
- Power Generation
- Ancillary Equipment
Preliminary Treatment

- Protects downstream equipment from damage (Pumps & Piping)
 - Bar Screens – remove solid material (paper, plastics, ect...)
 - Grit Removal – removes inorganic abrasive material (sand, fine rocks, pebbles) by slowing the velocity of the sewage down to approximately 1-Ft/sec
CEDAR CREEK WPCP
Primary Treatment

- Primary Clarifiers (10-units in total)
 - Removes up to:
 - 99% of settleable solids
 - 40 -60% suspended solids
 - 10 -15% total solids
 - 20 – 40% BOD

Accomplished by slowing the velocity of the sewage down to achieve gravitational settling
<1-Ft/sec – detention times 2-3 hours
Secondary Treatment

- Secondary treatment is composed of aeration basins (6-units / 4-passes) & final clarification (12-units)
- In the secondary treatment process bacteria is cultured within a controlled environment (AERATION TANKS)
- The bacteria reduces the pollutants (BOD, TSS ect...) to acceptable levels prior to discharge, detention times 6-8 hours
- Final clarifiers rely upon gravity settling to separate the solids from the treated water, detention times 1-3 hours
Secondary Overview

Aeration Tanks
(mixed liquor suspended solids)

Final Clarifiers

Effluent

Primary Effluent

Return Activated Sludge (RAS)

Gravity Belt Thickeners

Waste Sludge (WAS)
How do I check my bacteria?

- Bacteria are extremely small, and measured in units called (microns), one micron = 1/1000 of a millimeter
- Since bacteria is so small and can not be seen under a regular microscope, we rely upon indicator organisms to determine the amount of bacteria we are culturing
Indicator organisms

- Flagellates
- Amoeboïds
- Free swimming ciliates
- Stalked ciliates
- Rotifers
- Nematodes
Disinfection / Discharge

- By the time the sewage exits the final clarifier's it has undergone secondary treatment, however it still contains pathogenic bacteria.
- The pathogens have to be reduced through the process known as disinfection.
- Disinfection is accomplished with sodium hypochlorite prior to discharge to Atlantic Ocean (approximately 6-miles from CC-plant).
CEDAR CREEK WPCP
Solids Handling

- **Thickening**
 - The sludge that is not returned to the aeration system is treated through a process known as thickening.
 - WAS waste activated sludge is mixed with cationic emulsion polymer.
 - The polymer reacts with the sludge causing the sludge particles to coagulate allowing the trapped water to drop out.
Why do we thicken sludge?

- To reduce the volume
 - WAS (waste activated sludge) is <1% solid
 - After thickening it is between 4% to 8% solid
- Save money
 - The energy expenditure to heat the water is tremendous
- Aid the Process
 - Un-thickened sludge would greatly reduce the detention time in the digesters
Solids Handling

- **Digestion**
 - Digestion is the process of volatile solids reduction of the primary and secondary sludge, accomplished by bacteria
 - Acid formers & methane fermenters
 - The organisms operate in the mesophilic range (98°F)
 - Detention time, approximately 21-days
Solids Handling

- Digestion (continued)
 - By products of digestion
 - Methane gas * utilized in power generation & mixing
 - Carbon dioxide
 - Water vapor
 - Digesting the sludge allows for more disposal options
Solids Handling

- Dewatering
 - Dewatering is the process of removing excess water from the digested sludge prior to disposal
 - Primary and secondary sludge that has undergone digestion are treated with cationic emulsion polymer, which reacts with the sludge causing the sludge particles to coagulate
Solids Handling

- **Dewatering (continued)**
 - After conditioning the sludge is applied to the BFP (Belt Filter Press)
 - **Gravity zone** – gravitational liquid separation
 - **Low pressure zone** – low pressure exerted to remove water from the sludge
 - **High pressure zone** – high pressure exerted to remove excess water from the sludge
 - **Sludge enters BFP at 1% to 3% solid**
 - **Sludge exits BFP at 17% to 20% solid**
Power Generation

- The Cedar Creek Facility does not import power from the grid, all plant power is produced in-house
- (5) Tri-fuel engine generators
 - Natural Gas
 - #2 Fuel Oil
 - Bio-Gas (methane from the digestion process)
- PSEG feeder influent / effluent pumping
Ancillary Equipment

- **Odor Control**
 - The plant mitigates odors through the use of wet chemical scrubbers
 - NaOH
 - NaOCL
 - The plant also utilizes a bio-filter to mitigate odors emanating from the biological process
 - Wood Chips
 - Water mist
Ancillary Equipment

- NOSE System
 - Real time odor control monitoring and modeling system
 - 10-data points around the perimeter of the facility with constant odor control monitoring and recording
Who monitors the plant?

- NYSDEC
 - SPDES Permit
 - Monthly DMR
 - Title-V Air Permit
 - Bi-annual emission reports
 - Annual report
- DMR-QA
 - Annual laboratory monitoring / reporting
Main Wastewater Treatment Requirements

- TSS = 30 mg/l (30-day average)
- BOD = 25 mg/l % (30-day average)
- Removal = 85% (30-day average)
Questions