Dear Customer,

As part of the Bayonne Water Joint Venture, SUEZ has partnered with the Bayonne Municipal Utilities Authority (BMUA) to operate and maintain Bayonne’s water system. Through the partnership, the BMUA retains ownership of the water infrastructure assets and sets rates. SUEZ, as contract operator, provides the day to day management of the water system. These organizations work together to provide you with water that meets — and often surpasses — all the health and safety standards set by the United States Environmental Protection Agency (EPA) and the New Jersey Department of Environmental Protection (NJDEP).

We regularly test water samples to be sure that your water meets the safety standards. All the test results are on file with the NJDEP, the agency that monitors and regulates drinking water quality in our state. The EPA and the NJDEP establish these regulations. They also require water suppliers to provide an annual Consumer Confidence Report (CCR) for their customers.

This CCR contains important information about your drinking water. It shows how your drinking water measured up to government standards in 2015. Please read it carefully and feel free to call us at 888-434-0518 if you have any questions. You can also call the EPA Safe Drinking Water Hotline at 800.426.4791 with water-related questions. If you have specific questions about your water as it relates to your personal health, we suggest that you contact your health care provider. For more information about SUEZ see our website www.mysuezwater.com.

Sincerely,

Chris Riat
Senior Director, Contract Operations

SUEZ provides water and wastewater services to over 7 million people in the United States. In addition to owning and operating regulated utilities, SUEZ operates municipal systems through public-private partnerships and contract agreements. Three of the nation’s largest water and wastewater contracts are operated by SUEZ.
about your water supply

The water supply for the City of Bayonne is obtained solely from the North Jersey District Water Supply Commission (NJDWSC). The NJDWSC water supply is mainly from the 29.6 billion gallon Wanaque Reservoir and from the 7 billion gallon Monksville Reservoir. NJDWSC also operates two pump stations designed to pump 250 million gallons per day of water from the Pompton River and 150 million gallons per day from the Ramapo River into the Wanaque Reservoir as needed. Located in Wanaque, New Jersey, the NJDWSC Water Treatment Plant purifies and filters the water to ensure its safety and potability.

To ensure the safety of the water, NJDWSC routinely monitors and tests the water at rivers, lakes and streams that supply its reservoirs.

Public participation in water quality matters is fundamental in fostering a constructive dialogue among all the various stakeholders. An opportunity for public participation is provided during regularly scheduled Bayonne Municipal Utilities Authority meetings held the first Monday of each month at 6 pm in the Council Chambers at the Municipal Building. A detailed schedule of the meeting dates can be obtained by calling 201.339.3200.

use water wisely

We encourage our customers to use water wisely. A little effort and common sense can make a big difference. By installing more efficient water fixtures and repairing leaks, families can reduce indoor water use by up to 25 percent and help save money on water and energy bills. The more you conserve, the more you save! For more information, please visit: www.epa.gov/watersense.

tap water or bottled water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Hotline at 800.426.4791.

The sources of drinking water (for both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that the water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. So, what’s the bottom line? If bottled and tap water meet the federal standards, they are both safe to drink. However, your tap water is substantially less expensive than bottled water.
storm water solutions - keep the streams clean

We all have a stake in maintaining a clean and abundant water supply for ourselves and generations to come. Properly managing stormwater is one way we can all help. Stormwater is runoff from rain and melting snow that can pick up trash and toxins as it travels through streets or yards. The runoff washes these pollutants directly into streams or into storm drains which lead to streams. They can cause harm to fish, wildlife, recreation resources and our drinking water supply. Simple lifestyle changes can help us protect our water supply and our environment.

in the yard
Our yards are great places to relax and unwind. Whether you enjoy growing a green lawn or a gorgeous garden, there are things you can do to help protect our water supply.

For example, use fertilizers only when needed and be sure to follow the manufacturer’s directions. To minimize the need for pesticides, consider landscaping with plants that are pest and drought resistant. A mulching mower can reduce lawn waste and any excess clippings can be used to enrich the soil. Never put leaves or grass clippings in the street or in storm drains.

around the house
While the products we use around our home are helpful, they may contaminate our water supplies if they are not disposed of properly. If you have unwanted chemicals, cleaners, paints, auto fluids and other substances, never pour them down a drain or into the ground.

Instead, call your municipality and ask for information on household hazardous waste programs. If you have a septic system, be sure it is in good working order and pumped periodically.

maintaining your car
A well maintained car helps the environment in many ways. Keep your car in top running condition and tend to leaks as soon as possible. Never dispose of oil, antifreeze or other fluids in a storm drain or by pouring them into the soil. Just one quart of motor oil can contaminate one million gallons of drinking water! Instead, contact your municipality for information on recycling and disposal of hazardous materials.

caring for pets
Pets are an important part of our families. And just like humans, their waste must be disposed of properly to prevent the spread of disease. If you leave pet waste on the ground, rain and melting snow can wash it into storm drains that lead to our rivers, lakes and streams.

To help protect our water supply, you must clean up after your pet immediately and you must never put pet waste in storm drains. In fact, your municipality requires pet owners to dispose of waste properly. You can do this by wrapping the waste and putting it in the trash or by flushing unwrapped waste down the toilet.

disposing of medications
Medications help us feel better and improve our quality of life. But improperly disposing of prescriptions and over the counter medications can be hazardous to our water supplies.

If you have medications you no longer need, don’t pour them down the drain or flush them down the toilet. Instead cross out personal information on the container then mix with water, coffee grinds, cat litter or dirt. Next, put the mixture in a container and place it in the trash.

for additional information
N.J. Department of Environmental Protection: 1-609-292-7219
www.state.nj.us/dep/stormwater

U.S. Environmental Protection Agency: 1-202-272-0167
www.epa.gov
source water assessment program

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at http://www.state.nj.us/dep/swap or by contacting the NJDEP, Bureau of Safe Drinking Water at 609.292.5550.

The table below illustrates the susceptibility ratings for the eight contaminant categories [and radon] for the NJDWSC resources [5 surface water intakes]. The table provides ratings of high (H), medium (M) or low (L) for each contaminant category. If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize [change existing] monitoring schedules based on the susceptibility ratings.

If you have questions regarding the source water assessment report or summary please contact the Bureau of Safe Drinking Water at watersupply@dep.state.nj.us or 609.292.5550.

susceptibility rating for Bayonne water sources

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>pathogens</th>
<th>nutrients</th>
<th>pesticides</th>
<th>volatile organic chemicals</th>
<th>inorganics</th>
<th>radionuclides</th>
<th>radon</th>
<th>disinfection by-products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJDWSC</td>
<td>H M L</td>
</tr>
<tr>
<td>Surface water intakes: (5 sources)</td>
<td>5 5 2 3 5 5 5 5 5 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

definitions

Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.
Nutrients: Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus.
Volatile Organic Compounds (VOCs): Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.
Pesticides: Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane.
Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.
Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment.
For more information on radon go to: http://www.nj.gov/dep/rpp/radon/index.htm or call 800.648.0394.
Disinfection Byproduct Precursors (DBPs): A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.
L, M, H: Low, Medium, High, susceptibility
P: Pumped into surface supply.
U: Not in Use/Out of Service

important information

Please pass this information along to those who speak Spanish, Portuguese, Korean, Gujarati or Arabic:

• Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

• Este reporte contém informações importantes sobre a sua água de beber. Traduza-o ou fale com alguém que o compreenda.

• Le informazioni in questo documento sono molto importanti per il vostro acqua potabile. Traducila o parlate con qualcuno che la comprenda.

• Questo documento contiene informazioni importanti riguardo alla vostra acqua potabile. Traducilo o parlate con qualcuno che la comprenda.

• นี่คือข้อมูลที่มีความสำคัญเกี่ยวกับน้ำที่ท่านดื่ม ท่านควรแปลหรือพูดกับผู้ที่เข้าใจได้
drinking water quality

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infections by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800.426.4791. The table below shows how the quality of your drinking water in 2015 compared to the standards set by the NJDEP.

<table>
<thead>
<tr>
<th>Inorganic Chemicals</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest* Result</th>
<th>Range of Results</th>
<th>Violation</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos MFL (2011)</td>
<td>7</td>
<td>7</td>
<td>1.48</td>
<td>1.20 - 1.48</td>
<td>No</td>
<td>Decay of asbestos cement water mains; erosion of natural deposits</td>
</tr>
<tr>
<td>Barium ppm</td>
<td>2</td>
<td>2</td>
<td>0.013</td>
<td>NA</td>
<td>No</td>
<td>Erosion of natural deposits; discharge of drilling wastes; discharge from metal refineries</td>
</tr>
<tr>
<td>Nitrate as nitrogen ppm</td>
<td>10</td>
<td>10</td>
<td>0.503</td>
<td>NA</td>
<td>No</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Organic Carbon (TOC)</th>
<th>MCLG</th>
<th>MCL</th>
<th>Average Ratio RAA</th>
<th>Range of Ratio (Monthly Ratio)</th>
<th>Violation</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC ppm</td>
<td>NA</td>
<td>TA=</td>
<td>1.0</td>
<td>0.94 - 1.0</td>
<td>No</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Turbidity NTU* (Combined Filtered Water) NA TT=95% <0.3NTU 0.28 100% No Soil run-off

^Turbidity is a measure of cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

<table>
<thead>
<tr>
<th>Copper and Lead</th>
<th>MCLG</th>
<th>AL</th>
<th>90th Percentile</th>
<th>Samples >AL</th>
<th>Violation</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper ppm</td>
<td>1.3</td>
<td>1.3</td>
<td>0.0825</td>
<td>0</td>
<td>No</td>
<td>Corrosion of household plumbing</td>
</tr>
<tr>
<td>Lead ppb</td>
<td>0</td>
<td>15</td>
<td>2.9</td>
<td>0</td>
<td>No</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disinfectant Residual</th>
<th>MRDLG</th>
<th>MRDL</th>
<th>Highest Result RAA</th>
<th>Range of Results</th>
<th>Violation</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine ppm</td>
<td>4</td>
<td>4.0</td>
<td>0.77</td>
<td>0.10 - 0.90</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Note: Disinfectant Residual range of results are site specific.

<table>
<thead>
<tr>
<th>Disinfection by-products - Stage 2</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Result LRAA</th>
<th>Range of Results</th>
<th>Violation</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAs ppb (HAAs: dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, trichloroacetic acid)</td>
<td>NA</td>
<td>60</td>
<td>39.9</td>
<td>19.3 - 46.1</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total THMs ppb (THMs: bromoform, bromodichloromethane, chlorodibromomethane, chloroform)</td>
<td>NA</td>
<td>80</td>
<td>66.5</td>
<td>41.8 - 73.6</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects Bayonne’s system specific data.

*Highest results are based upon the highest single sample.
**Highest results are based upon the highest monthly results.
RAA=Running Annual Average
LRAA = Locational Running Annual Average is the yearly average of all the results at each specific sampling site in the distribution system.
Secondary Standards

Secondary standards – water quality parameters related to the aesthetic quality of drinking water.

<table>
<thead>
<tr>
<th>Substance</th>
<th>NJ RUL</th>
<th>Highest Result</th>
<th>Range of Results</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS/LAS ppm</td>
<td>500</td>
<td>0.07</td>
<td>NA</td>
<td>Discharge from waste systems</td>
</tr>
<tr>
<td>Alkalinity ppm</td>
<td>NA</td>
<td>40.9</td>
<td>NA</td>
<td>Natural mineral</td>
</tr>
<tr>
<td>Aluminum ppb</td>
<td>200</td>
<td>56</td>
<td>NA</td>
<td>Erosion of natural deposits and industrial discharge</td>
</tr>
<tr>
<td>Chloride ppm</td>
<td>250</td>
<td>80.2</td>
<td>NA</td>
<td>Natural mineral, road salt</td>
</tr>
<tr>
<td>Color CU</td>
<td>10</td>
<td>1</td>
<td>NA</td>
<td>Natural mineral and organic matter</td>
</tr>
<tr>
<td>Hardness (as CaCO3)ppm</td>
<td>250</td>
<td>72.4</td>
<td>NA</td>
<td>Natural mineral</td>
</tr>
<tr>
<td>Iron ppb</td>
<td>300</td>
<td>42</td>
<td>22 - 42</td>
<td>Erosion of natural deposits and oxidation of iron components</td>
</tr>
<tr>
<td>pH</td>
<td>6.5 - 8.5</td>
<td>8.34</td>
<td>NA</td>
<td>Natural mineral, treatment process</td>
</tr>
<tr>
<td>Sodium ppm</td>
<td>50</td>
<td>46.5</td>
<td>NA</td>
<td>Natural mineral, road salt</td>
</tr>
<tr>
<td>Sulfate ppm</td>
<td>250</td>
<td>11.1</td>
<td>NA</td>
<td>Natural mineral</td>
</tr>
<tr>
<td>Total Dissolved Solids ppm</td>
<td>500</td>
<td>159</td>
<td>NA</td>
<td>Natural mineral</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects Bayonne’s system specific data.

*Note on exceedences: Secondary standards are non-mandatory guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color and odor. These contaminants are not considered to present a risk to human health.

* Highest results are based upon the highest single sample.

Unregulated Substances

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA and DEP in determining the occurrence of unregulated contaminants in drinking water and whether regulation is warranted.

<table>
<thead>
<tr>
<th>Substance (2014 Data)</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest* Result</th>
<th>Range of Results</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium ppb</td>
<td>NA</td>
<td>100</td>
<td>0.2</td>
<td>ND - 0.2</td>
<td>Prevalent natural element</td>
</tr>
<tr>
<td>Strontium ppb</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>56</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chlorate ppb</td>
<td>NA</td>
<td>NA</td>
<td>190</td>
<td>23 - 190</td>
<td>By-product of drinking water disinfectant</td>
</tr>
<tr>
<td>Chromium-6 ppb</td>
<td>NA</td>
<td>NA</td>
<td>0.06</td>
<td>0.04 - 0.06</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

*Highest results are based upon the highest single sample.

NOTE: Shaded area reflects Bayonne’s system specific data.

Additional information about unregulated contaminants can be found at the following link, courtesy of American Water Works Association:

Definitions

ABS/LAS: Alkylbenzene Sulphonate and Linear Alkylbenzene Sulphonate (surfactants)

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

CU: Color unit.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectant to control microbial contamination.

NA: Not applicable.

ND: Not detected.

NJ RUL: New Jersey Recommended Upper Limit

NTU: Nephelometric Turbidity Unit.

ppb Parts per billion: The equivalent of one second in 32 years.

ppm Parts per million: The equivalent of one second in 12 days

pCi/L Picocuries per liter: The equivalent of one second in 32 million years.

Primary Standards: Federal drinking water regulations for substances that are health-related. Water suppliers must meet all primary drinking water standards.

Secondary Standards: Federal drinking water measurements for substances that do not have an impact on health. These reflect aesthetic qualities such as taste, odor and appearance. Secondary standards are recommendations, not mandates.

TON: Threshold Odor Number.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
health & educational notes

MCLs are set at very stringent levels. To understand the possible health effects described for many constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Special Consideration Regarding Children, Pregnant Women, Nursing Mothers and Others:

Children may receive a slightly higher amount of constituent present in the water than adults, because they may drink a greater amount of water per pound of body weight than adults. For this reason, reproductive or development effects occur at lower levels than other health effects of concern. If there is insufficient toxicity information for a constituent (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into calculation of the drinking water standard, thus making the standard more stringent. In the case of lead and nitrates, effects on infants and children are the health endpoints upon which standards are based.

lead and your drinking water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. United Water and the BMUA are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure are available from the Safe Drinking Water hotline or at http:www.epa.gov/safewater/lead.

Frequently asked questions about lead in drinking water can be found here: https://www.mysuezwater.com/sites/default/files/SUEZ_8.5x11_Lead_FAQ.pdf